1

Bachelor of Science in Mechanical Engineering

The Bachelor of Science (BS) in Mechanical Engineering prepares students for a career in mechanical engineering and associated professional fields. Opportunities in mechanical engineering are broad and diverse, including the automotive and aerospace industries, biotechnology, the oil and natural gas industries, renewable energy and environmental controls, manufacturing, computer and electronic hardware, and more. UAA's BS in Mechanical Engineering program provides hands-on learning and professional networking opportunities to prepare students for a successful career.

The BS in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org (https://www.abet.org/).

Licensure and/or Certification

Graduates of the BS in Mechanical Engineering gain four years of education credit toward obtaining a Professional Engineer license in Alaska.

This program is designed to meet the educational requirements for professional licensure or certification in the State of Alaska. However, the program might not meet the educational requirements for professional licensure or certification in other states. Please see UAA's Licensure and Certification website (https://www.uaa.alaska.edu/academics/office-of-academic-affairs/licensure.cshtml/) for more information.

Admission Requirements

 Complete the Admission Requirements for Baccalaureate Degrees. (http://catalog.uaa.alaska.edu/academicpoliciesprocesses/ admissions/undergraduate/)

Special Considerations

- Students who intend to enroll in this degree of study are strongly encouraged to complete the following content in high school with a grade of C or better: Trigonometry (1/2 year), Physics (1 year), Algebra (2 years), Chemistry (1 year), and English (3 years). Insufficient preparation may increase the number of semesters required to complete the degree.
- All prerequisites for engineering courses must be completed with a minimum grade of C, and all courses listed in the major requirements must be completed with a grade of C or higher. A student who is unable to earn a grade of C or higher in a program course offered by the College of Engineering will be required to meet with a department faculty advisor to develop a plan for improvement of academic performance before continuing in the program. A student who fails to earn a grade of C or higher on the second attempt will be required to meet with an academic advisor and a member of the College of Engineering professional advising staff to develop a plan for improvement of academic performance before continuing in the program. A student who fails

- to earn a grade of C or higher on the third attempt will be removed from the program. Re-admittance requires a letter of appeal from the student requesting re-admittance with an explanation of any mitigating factors and how these factors have been addressed. Readmittance is subject to approval by the faculty of the program and is communicated by the department chair.
- The program requires its students to abide by the principles of academic integrity described in the Student Code of Conduct. Should suspected cases of academic misconduct occur, these cases may be submitted to the UAA Dean of Students Office, where the assistant director of student conduct reviews all allegations of academic misconduct. At the conclusion of the review, the assistant director of student conduct issues a notification of the findings and conclusions to the reporting faculty member, department chair and dean. Should a student from the program be found responsible for a case of academic misconduct by the UAA Dean of Students Office on two separate occasions, that student will be removed from the program. Re-admittance requires a letter of appeal from the student requesting re-admittance with an explanation of any mitigating factors and how these factors have been addressed. Readmittance is subject to approval by the faculty of the program and is communicated by the department chair.

Graduation Requirements

- Complete the General University Requirements for Baccalaureate Degrees (http://catalog.uaa.alaska.edu/undergraduateprograms/baccalaureaterequirements/gers/).
- Complete the General Education Requirements (GER) for Baccalaureate Degrees (http://catalog.uaa.alaska.edu/ undergraduateprograms/baccalaureaterequirements/gers/).
 - The 3 credit Tier 1 Quantitative Skills GER will be met and exceeded by the following degree requirements: MATH A251 or MATH A251F, MATH A252 or MATH A252F, and MATH A253.
 - The 7 credit Natural Science GER will be met and exceeded by the following degree requirements: CHEM A105, CHEM A105L, PHYS A211, PHYS A211L, PHYS A212, and PHYS A212L.
- Complete the following major requirements with a minimum grade of C:

Code	Title	Credits
Core Courses		
BA A300	Organizational Theory and Behavior	3
or ESM A450	Economic Analysis and Operations	
CHEM A105 & A105L	General Chemistry I and General Chemistry I Laboratory	4
EE A203	Fundamentals of Electrical Engineering I	3
ENGR A151	Introduction to Engineering	1
ES A106	Engineering Graphics	2
ES A209	Statics	3

ES A210	Dynamics	3
ES A261	Introduction to Engineering	3
	Computation	
ES A331	Mechanics of Materials	3
ES A341	Fluid Mechanics	4
& ME A341L	and Fluid Mechanics Lab	
ES A346	Introduction to Thermodynamics	3
MATH A251	Calculus I	4-6
or MATH A251F	F.A.T. Calculus I	
MATH A252	Calculus II	4-6
or MATH A252F	F.A.T. Calculus II	
MATH A253	Calculus III	4
MATH A302	Ordinary Differential Equations	3
ME A203	Machine Design I	3
ME A303	Machine Design II	3
ME/EE A306	Dynamics of Systems	3
ME/EE A308	Instrumentation and Measurement	3
ME A334	Materials Science	4
& A334L	and Materials Science Laboratory	
ME A403	Machine Design III	3
ME A414	Thermal System Design	4
& A414L	and Thermal System Design Lab	
ME A438	Design of Mechanical Engineering	3
	Systems	
ME A441	Heat and Mass Transfer	3
PHYS A211	General Physics I	4
& A211L	and General Physics I Laboratory	
PHYS A212	General Physics II	4
& A212L	and General Physics II Laboratory	
STAT A307	Probability and Statistics	4
Advanced Engineering	Electives	
Complete 12 credits, inc	luding at least 9 credits of ME	12
courses, from the follow	ing:	
ME A408	Mechanical Vibrations	
or ME A608	Mechanical Vibrations	
ME A421	Engineering Finite Element	
	Analysis	
or ME A621	Engineering Finite Element Analysis	
ME A432	Analytical Dynamics	
or ME A632	Analytical Dynamics	
ME A434	Materials Selection for Design	
ME A442	Advanced Fluid Mechanics	
or ME A642	Advanced Fluid Mechanics	
ME A451	Aerodynamics	
or ME A651	Aerodynamics	
ME A454	Manufacturing Design	
ME A456	Renewable Energy Systems	
	Engineering	
or ME A656	Renewable Energy Systems Engineering	
ME A459	Fracture Mechanics	

or ME A659	Fracture Mechanics
ME A460	Turbomachinery
or ME A660	Turbomachinery
ME/EE A471	Automatic Control
ME A630	Advanced Mechanics of Materials
ME A664	Corrosion Processes and
	Engineering
ME A672	Advanced Linear Systems
or EE A472	Advanced Linear Systems

Total 100-104

A minimum of 124 credits is required for the degree, of which 39 credits must be upper-division.

Honors in Mechanical Engineering

The BS in Mechanical Engineering recognizes distinguished achievement by conferring programmatic honors in mechanical engineering. In order to receive honors in mechanical engineering, a student must meet the following requirements:

- Complete all program requirements;
- Earn a minimum cumulative GPA of 3.50 or above in the courses required for the major;
- Gain approval for, complete, and present a design/research project prior to applying for graduation. The project proposal, presentation and final written report must be approved by the program faculty.