Bachelor of Science in Mechanical Engineering

The Bachelor of Science (BS) in Mechanical Engineering prepares students for a career in mechanical engineering and associated professional fields. Opportunities in mechanical engineering are broad and diverse, including the automotive and aerospace industries, biotechnology, the oil and natural gas industries, renewable energy and environmental controls, manufacturing, computer and electronic hardware, and more. UAA’s BS in Mechanical Engineering program provides hands-on learning and professional networking opportunities to prepare students for a successful career.

The BS in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET (https://www.abet.org).

Licensure and/or Certification

Graduates of the BS in Mechanical Engineering gain four years of education credit toward obtaining a Professional Engineer license in Alaska.

Please go to UAA’s Authorization by State (https://www.uaa.alaska.edu/academics/office-of-academic-affairs/provost_office/uaa-state-authorization/authorization.csh.html/) website for information about licensure or certification in a state other than Alaska.

Admission Requirements

Complete the Admission Requirements for Baccalaureate Degrees. (http://catalog.uaa.alaska.edu/academicpoliciesprocesses/admissions/undergraduate/)

Special Considerations

• Students who intend to enroll in this degree of study are strongly encouraged to complete the following content in high school with a grade of C or better: Trigonometry (1/2 year), Physics (1 year), Algebra (2 years), Chemistry (1 year), and English (3 years). Insufficient preparation may increase the number of semesters required to complete the degree.

• All prerequisites for engineering courses must be completed with a minimum grade of C, and all courses listed in the major requirements must be completed with a grade of C or higher. A student who is unable to earn a grade of C or higher in a program course offered by the College of Engineering will be required to meet with a department faculty advisor to develop a plan for improvement of academic performance before continuing in the program. A student who fails to earn a grade of C or higher on the second attempt will be required to meet with an academic advisor and a member of the College of Engineering professional advising staff to develop a plan for improvement of academic performance before continuing in the program. A student who fails to earn a grade of C or higher on the third attempt will be removed from the program. Re-admittance requires a letter of appeal from the student requesting re-admittance with an explanation of any mitigating factors and how these factors have been addressed. Re-admittance is subject to approval by the faculty of the program and is communicated by the department chair.

• The program requires its students to abide by the principles of academic integrity described in the Student Code of Conduct. Should suspected cases of academic misconduct occur, these cases may be submitted to the UAA Dean of Students Office, where the assistant director of student conduct reviews all allegations of academic misconduct. At the conclusion of the review, the assistant director of student conduct issues a notification of the findings and conclusions to the reporting faculty member, department chair and dean. Should a student from the program be found responsible for a case of academic misconduct by the UAA Dean of Students Office on two separate occasions, that student will be removed from the program. Re-admittance requires a letter of appeal from the student requesting re-admittance with an explanation of any mitigating factors and how these factors have been addressed. Re-admittance is subject to approval by the faculty of the program and is communicated by the department chair.

Graduation Requirements

• Complete the General University Requirements for Baccalaureate Degrees (http://catalog.uaa.alaska.edu/undergraduateprograms/baccalaureaterequirements/gers/). (http://catalog.uaa.alaska.edu/undergraduateprograms/baccalaureaterequirements/)

• Complete the General Education Requirements (GER) for Baccalaureate Degrees (http://catalog.uaa.alaska.edu/undergraduateprograms/baccalaureaterequirements/gers/).

• The 3 credit Tier 1 Quantitative Skills GER will be met and exceeded by the following degree requirements: MATH A251, MATH A252, and MATH A253.

• The 7 credit Natural Science GER will be met and exceeded by the following degree requirements: CHEM A105, CHEM A105L, CHEM A106, CHEM A106L, PHYS A211, PHYS A211L, PHYS A212, and PHYS A212L.

• Complete the major requirements below with a minimum grade of C:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM A105 & A105L</td>
<td>General Chemistry I and General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>CHEM A106 & A106L</td>
<td>General Chemistry II and General Chemistry II Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ENGR A151</td>
<td>Introduction to Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ES A106</td>
<td>Engineering Graphics</td>
<td>2</td>
</tr>
<tr>
<td>ES A209</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>ES A210</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ES A261</td>
<td>Introduction to Engineering Computation</td>
<td>3</td>
</tr>
<tr>
<td>ES A302</td>
<td>Engineering Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>ES A309</td>
<td>Elements of Electrical Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>
ES A331 Mechanics of Materials 3
ES A341 Fluid Mechanics 4
& A341L Fluid Mechanics Laboratory
ES A346 Introduction to Thermodynamics 3
ESM A450 Economic Analysis and Operations 3
MATH A251 Calculus I 4
MATH A252 Calculus II 4
MATH A253 Calculus III 4
MATH A302 Ordinary Differential Equations 3
ME A280 Solid Modeling for Engineers 3
ME/EE A306 Dynamics of Systems 3
ME/EE A308 Instrumentation and Measurement 3
ME A313 Mechanical Engineering Thermodynamics 3
ME A334 Materials Science 4
& A334L Materials Science Laboratory
ME A403 Machine Design 3
ME A414 Thermal System Design 4
& A414L Thermal System Design Lab
ME A438 Design of Mechanical Engineering Systems 3
ME A441 Heat and Mass Transfer 4
& A441L Heat and Mass Transfer Lab
PHYS A211 General Physics I 4
& A211L General Physics I Laboratory
PHYS A212 General Physics II 4
& A212L General Physics II Laboratory

Advanced Mathematics Electives

Complete one of the following: 3

MATH A314 Linear Algebra
MATH A371 Stochastic Processes
MATH A407 Mathematical Statistics
MATH A410 Introduction to Complex Analysis
MATH A424 Advanced Engineering Mathematics: Linear Algebra and Numerical Analysis
MATH A425 Advanced Engineering Mathematics: Partial Differential Equations and Complex Variables
MATH A426 Numerical Analysis
MATH A432 Partial Differential Equations

Advanced Engineering Electives

Complete 12 credits, including at least 6 credits of ME courses, from the following: 12

ME A408 Mechanical Vibrations
or ME A608 Mechanical Vibrations
ME A415 Composite Materials
or ME A615 Composite Materials
ME A420 Automotive Engineering
ME A421 Engineering Finite Element Analysis
or ME A621 Engineering Finite Element Analysis
ME A432 Analytical Dynamics
or ME A632 Analytical Dynamics
ME A434 Materials Selection for Design
ME A442 Advanced Fluid Mechanics
or ME A642 Advanced Fluid Mechanics
ME A451 Aerodynamics
or ME A651 Aerodynamics
ME A454 Manufacturing Design
ME A455 HVAC Systems Optimization
or ME A655 HVAC Systems Optimization
ME A456 Renewable Energy Systems Engineering
or ME A656 Renewable Energy Systems Engineering
ME A459 Fracture Mechanics
or ME A659 Fracture Mechanics
ME A460 Turbomachinery
or ME A660 Turbomachinery
ME/EE A471 Automatic Control
ME A610 Biomechanics
ME A630 Advanced Mechanics of Materials
ME A664 Corrosion Processes and Engineering
ME A672 Advanced Linear Systems
or EE A472 Advanced Linear Systems

Total 107

A minimum of 131 credits is required for the degree, of which 42 credits must be upper-division.

Honors in Mechanical Engineering

The BS in Mechanical Engineering recognizes distinguished achievement by conferring programmatic honors in mechanical engineering. In order to receive honors in mechanical engineering, a student must meet the following requirements:

- Complete all program requirements.
- Earn a GPA of 3.50 or above in the courses required for the major.
- Gain approval for, complete and present a design/research project prior to applying for graduation. The project proposal, presentation and final written report must be approved by the program faculty.